
m

RROR

LOW LEVEL GRAPHICS INTRINSICS

cr
COPYRIGHT (C) TERAK CORPORATION 1979

TERAK Publication Number 60-0024-101

REV 1

14405 NORTH SCOTTSDALE ROAD • SCOTTSDALE, ARIZONA 85254 • (602)991-1580

Page l

* LOW. LEYEI GRAPHICS INTRINSICS * * SECTION 2.1.4 *

Version 1.5 September 1978

Updated May 1979, TERAK Corporation

Pub no. 60-0024-101

INTRODUCTORY INFORMATION

(REPLACEMENT
PACES)

REV 1

The Terak 6510/a supports bit mapped, raster scan graphics,
refreshed directly from main memory. The display presented is a
composite of the 240 by 320 dot graphics display with the 24 by 80

character display. Two 8510/a registers, in the I/O memory page,

control the display of graphics: the Graphics Address Register (GAR)
contains the starting address of the memory to be displayed as

graphics. The Video Control Register (VCR) controls the

blanking/unblanking of the graphics and characters on the video
monitor. Detailed descriptions of the operatons of these registers

are contained in the VIDEO DISPLAY AND 24K MEMORY SYSTEM User

Reference Guide, TERAK Publication Number 52-0002-001.

The GAR and VCR may be set from high level Pascal code by the

UNITWRITE intrinsic operating on Unit #3 (GRAPHIC:). Before issuing
a call to UNITWRITE, the Pascal program should have allocated memory

for graphics by declaring a variable. For example, the following
statements allocate one picture space:

TYPE

TERAXSCREEN = RECORD

CASE INTEGER OF

1:(BITS
2:(CHRS
3:(INTS

4:(SETS [] [
5:(blks: array [0..18tj of array[0. .255]

end;(*case*)

PACKED ARRAY[0..239] OF PACKED ARRAY [0..319] OF BOOLEAN);
PACKED ARRAY[0 ..9599] OF CHAR);
ARRAY [0..4799] OF INTEGER;);

ARRAY [0..4799] OF SET OF [0..15]);

[TJ] OF INTEGER)

VAR SCREEN :TERAKSCREEN;

These allocate one picture-full of memory to the variable SCREEN.
The screen contents can be manipulated either by direct assignment:

SCREEN .BITS [ie,100]:= TRUE

(which lights the dot at row 10, column 100), by I/O intrinslcs:

RESET(PII, 'PIX.FOTO'); PIXOK:=BLOCKRFAD(PIX,SCREEN,19)=19J

(which loads a binary file into the picture), by high level operations:

FOR I:=0 TO 4799 DO SCREEN. SETS [I] := [0. .15] - SCREEN .SETS [I] ;

(which reverses the entire picture), or by intrinsic graphic procedures.

Page 2

The graphic procedures supplied with the Terak release of the UCSD
Pascal system are documented here. Note that a picture memory space

need not be a full screen, and need not necessarily be displayed

while being manipulated. Typically, the picture memory space must be
initialized to all blanks or all dots lit. This can be accomplished,
respectively, by either of these two statements:

FILLCHAR(SCFEENf9600fCHR(0)) for blanks, or
FILLCHAR(SCREEN,9600,CHR(255)) for all dots lit.

The generic call of UNITVRITE tc volume #3 connects the graphics

display hardware of the 8510/a with the allocated picture memory:

UNITWRITE(3,GARVAL,VCRVAL)J

where GARVAL = <starting address of picture memory>,
and VCRVAL = <lnteger zone blanking variable>

The GARVAL parameter locates the graphics display memory, and the

VCRVAL parameter directs which of the character and graphics zones

of the 6510/a are to be visible. When using UNITWRITE to volume #3

the address of the second parameter is loaded into the GAR, and the

third parameter is loaded directly into the VCR. Thus, any of the

bits in the VCR can be changed by placing the decimal representation

of the bits into the third parameter of a UNITWRITE call to volume

#3. VCR values from 0 to 63 cover all combinations of graphics and

character zone blanking. Addresses loaded into the GAR must always

be on even (integer) boundaries, and may be indexed from the array
base. The following illustrate different effects of the UNITWRITE

parameters:

UNITWRITE(3,SCREEN,63);
Display 3 (all) zones of graphics from picture memory in SCREEN,

and display 3 (all) zones of the character display.

UNITWRITE(3,SCREEN,56)?

Display 3 (all) zones of graphics from picture memory in SCREEN,
and blank all zones of the character display.

UNITWRITE(3,SCREEN,49);

Display upper two zones of graphics from picture memory In SCREEN,

and lower one zone of the character display.

UNITWRITE(3,SCREEN.INTS[1600],19);
Display middle one zone of graphics from picture memory in SCREEN,

starting at SCREEN[32C0] thru SCREEN [4799] , and lower one zone of
the character display. The upper display zone is blanked. Note that

the GAR must be directed to the virtual starting address of the

upper zone, although it and other zones may be blanked.

UNITWRITE(3,If263); UNITWRITE(3,I,63)J
y Blank all graphic display zores, unblank all character display zones,

xl and sound a 'click' at the display by toggling the state of the Audio
bit in the VCR. In this case, 'I' is a dummy second parameter.

Page 3

GRAPHICS PROCEDURE CALLS

The Procedures DRAWLINE and DRAWBLOCK are provided by UCSD. The

Procedures DRWBLK, GCHAR, GMAPK, and THROTTLE are provide by TERAK.
All procedures are contained in *SYSTEM.LIBRARY and must be
declared EXTERNAL before use.

##****#*#**$**##*##*#*#*##*,}(WARNING #****#*#*#*♦#****#****#*##*

** These graphics procedures do no range checking on parameters. **
** If parameters passed to the procedures are 'out of bounds' the **
** procedures will produce unexpected results — most likely, **
** destruction of the user program, or operating system. **

DRAWLINE, DRAWBLOCK, and DRWBLK CONVENTIONS

The Coordinate System used by DRAWLINE, DRAWBLOCK, and DRWBLK fixes

the point (0,0) in the upper left portion of the display. X and Y
locations of the screen should be addressed using the following
scheme.

(0,0) (319,0)

j positive X direction RIGHT. j
j positive Y direction DOWN. |

(0,239) (319,239)

Page 4

DRAWLINE

This procedure draws lines in one of five modes, into memory. Note
that the ROWWIDTB parameter indicates the width of the picture space,
and is not necessarily restricted to the standard, screen width.
Picture space widths must be on Integer boundaries? thus the
parameter indicates the multiples of 16 bits of width required.
Drawing into reduced width pictures is useful tc prepare a sub-
picture for transfer by DRAVBLK, which also has a width parameter.
In all DRAWLINE calls, the starting bit is not affected by the line.
RADAR mode will return the number of steps from the starting point
to the nearest obstacle (bits set) along the line, into RANGE.

PROCEDURE

VAB

VAR

DBAWLINE(

RANGE : INTEGER; {returns result of radar scan when PENSTATE=4}
SCREEN: TERAKSCREEN* {graphics memory}

PENSTATE

0

1

2

3

4

ROWWIDTH,

XSTART,

YSTART,

DELTAX,

DELTAY,

penstate:integer

); exteral;

ACTION

#of 16 bit words" per
beginning X point of

beginning Y point of

distance to move in 3
distance to move in 1

row,

line

line

typically 20 }

PENUP

PENDOWN

ERASE

COMPLEMENT

RADAR

no change in picture

force bits on

force bits off
reverse bits

scan for obstacle, no change in picture

NOTE: A Pascal implementation of DRAVLINE is provided on page 159
Of the UCSD PASCAL MANUAL.

Page 5

DRAWELOCK

This procedure will do a two-dimension oriented transfer of bits,

from a source block into a target block. The source and destination
block must be cf the same width and height, but may be located at

any bit location within the same or different picture memory spaces.

Different picture memory spaces are allowed to have different

widths. The effect which the source block has upon the target block

is controlled by the mode parameter. Complement mode is useful to

overlay a picture with a block image, and then erase it while
restoring the original picture contents. Graphics animation

typically irakes use of Complement mode. NOTE: DRAWBLK calls which
overlap the source and target blocks should be approached with

caution. Note also that row widths are given in bits, not words (as

in DRAWLINE), and must be a multiple of 8.

CONST

SRCXSIZE = {# of bits in source x direction. Use ((multiple of 8)-l)}
SRCYSIZE = {number of bits in source y direction}
TGTXSIZE - 319; {320 bits in x when target is TERAKSCREEN}
TGTYSIZE = 239; {240 bits in y when target is TERAKSCREEN}

TYPE

TFRAKSCREEN = PACKED ARRAY[0. .TGTYSIZE] OF
PACKED ARRAY("0..TGTXSIZS] OF BOOLEAN?

SRC = ARRAY [0..SRCYSIZE] OF

PACKED ARRAY[0..SRCXSIZE] OF BOOLEAN;

PROCEDURE DRAWBLOCK(VAR SOURCE : SRCJ {source block}
SRCROW, {#bits/row of block, multiple of 8}
SRCX, (x start location of source}
SRCY :INTEGERJ {y start location of source}

VAR DEST :TERAKSCREEK; {Destination block}
DSTBOV, {#bits/row of dst block, multple of 8}
DSTX, {x start location of destination}
DSTY, {y start location of destination}
CNTX, {number of bits to move x direction}
CNTY, {number of bits to move y direction}
MODE :INTEGER {see below}
); external;

drawblock mode action

0 tgt := src {replace}

1
2

3

tgt !

tgt i

tgt :

t= not

:= src

:= src

(src
XOR

OR

)
tgt

tgt

p

{complement & overlay}
{eraseable overlay}
{overlay}

Page 6

N0TE1: The call, interface and modes are different from the 1.4

Implementation of DRAWBLOCK. If you are converting programs
from 1.4 to 1.5 either change mode parameters, or use the
DEWBLK procedure provided below.

N0TE2: When using DRAWBLOCK or DRWBLK for animation the intrinsics

UNITWAIT and DNITWRITE on volume #3 perform syncronization with
vertical retrace of the video display (every 60th of a second).
This is useful to pace the changes to the screenf maintaining
uniform intensity of animated features.

Page 7

DRWBLK

DRWELK is provided for use in converting programs from 1.4 to 1.5.

If you are beginning new development use DRAWBLOCK above as it

performs the same function as DRVBLK in a more general fashion.

In particular, note that DRWBLK requires that the source block be on

an even (Integer) boundaryf while DRAWBLK is completely general*
Alsof the Mode parameter differs in values from the two procedures.

To convert L4 programs to 1.5 include the following external

declaration for DRWBLK then change every occurance of DRAWBLOCK

to DRWBLK in the program.

PROCEDURE DFWBLK(VAR SOURCE:SRCJ {source block}
VAR SCREEN:TERAKSCREENJ {target block}

ROWSIZE, ' '
STARTXf

STARTY,

SIZEX,

SIZEYf

mode : integer

); external;

{always 20}
{start x for target}
(start y for target}
{number of bits to move in x\
{number of bits to move in y'
{see below}

DRWBLK MODES

0

1

2

3

ACTION

tgt := tgt OR src

tgt := src

tgt := not (src)
tgt := tgt XOR src

; •::.. • ' .■;

... ■ .' ..%■'■?

.'■ '.'"■■■..' .">. ' ■ ■'.

•*"5...-*■■,''&■ 'V*

Page 8

GCHAR & GMARK

The following routines GMARK & GCHAR support graphics on the 6510/a
by drawing characters and markers in the graphics space.

Both routines

(0,0) defined

is a diferent

address the screen in absolute screen coordinates with
as the lower left corner of the screen. Note that this
addressing convention from that of DRAWLINE or DRAWBLK,

orBoth routines will support a picture memory height smaller, equal to,
larger than the actual display height (as controlled by the VCR zone
blanking. The y dimension must, however, be a multiple of 80 (i.e
1/3 screen or the equivalent of a single screen zone. The parameter
NZONE conveys the the picture memory height to the procedures.

The screen dimension in the x direction is always 0..319.

(0, (nzone*80)-l) -(319, (nzone*30)-l)
!

(0,0)'

ABSOLUTE

screen coordinates for

GMARK AND GCHAR

(319,0)

Linestyle for both routines is 0 for white (set bits on),

(clear bits out—erase). Neither routine supports XOR or
mode.

1 for black

COMPLIMENT

Character patterns for GCHAR are derived from an 8 dot wide by 10

dot high template, which is fetched from the 8510/a writeable

character generator. The HEIGHT and WIDTH parameters to GCHAR define
how many templates high and wide the target character block will be.
Thus a call to GCHAR with the parmeter values h=3 and w=-2 would create
a character in the graphics space which is 30 dots high and 16 dots wide

The X, Y coordinates locate the lower left corner of the target block.

PROCEDURE GCHAR(VAR:
SCREEN ARRAY:

NZONE

ORD(CHAR)
X

Y

HEIGHT

WIDTH

LINESYLE

POINTER TO ARRAY USED AS SCREEN,

INTEGER, {NUMBER OF ZONES TO DRAW ON}
{Character to print}

{RANGE 0<=X<=319}
{RANGE 0<=Y<=(NZONE*80-1)}

INTEGER,

INTEGER,

INTEGER,

INTEGER

INTEGER,

INTEGER); external;

1

Page 9

GMABK

This routine draws a ? dot wide by 7 dot high marker, into the

graphics picture memory. The pattern of the marker is controlled by

the parameter MN. The marker will be centered on the screen location

X,Y. If the marker would lie outside the clipping boundary defined
by [XLEFT..XRIGHT] and [YBOT..YTOP] then the marker will be trimmed
to fit the boundary.

The following conditions are expected to be true. Violation of these
conditions will result in unpredictable results.

0<=X<=319

0<=Y<=NZONE*80-1

XLEFT <= X <= XRIGET

YBOT <= Y <= YTOP

PROCEDURE GMARK(SCREEN: ARRAY FOR SCREEN DISPLAY
OF 1/3 ZONES OF SCREEN
X LOCATION OF MARKER

Y LOCATION OF MARKER

MARKER NUMBER 0<=MN<=7

XLEFT OF WINDOW TO CLIP MARKER

XBIGHT OF WINDOW TO CLIP MARKER

YBOTTCM TO CLIP MARKER
YTOP TO CLIP MARKER

LINESTYLE FOR PEN: 0 IS WHITE, 1 BLACK

NZONE :

X !

Y !

MN !

AXL :

AXR :

AYB !

AYT :

LSTY :

t INTEGER,

! INTEGER,

: INTEGER,

i INTEGER,

i INTEGER,

: INTEGER,

: INTEGER,

r INTEGER,

! INTEGER,

THROTTLE

This procedure provides rudicentarty time control

return to the calling program when the indicated time,

the line frequency clock, has passed.

Control
in ticks

will

of

PROCEDURE THROTTLE(TICKS:INTEGER); EXTERNAL?

